BauBuche Beech laminated veneer lumber Comparison of BauBuche and other building materials

BauBuche

Comparison of BauBuche and other building materials

Sheet **CONTENTS**

- 2 6.1 Breaking length BauBuche S Spruce LVL Glulam GL24 S235 steel C30/37 concrete
- 3 6.2 Savings in material Solid timber Glulam GL28 Spruce LVL BauBuche GL75
- 4 6.3 Comparison of BauBuche and steel

Comparison of structural bending strength of BauBuche and various rolled steel sections

© Pollmeier Massivholz GmbH & Co.KG

Pferdsdorfer Weg 6 99831 Creuzburg

BauBuche consulting service for architects, civil engineers, builders and timber construction companies P +49 (0)36926 945 560 baubuche@pollmeier.com

Consulting service on sawn timber, BauBuche, Pollmeier LVL and contact person for the trade P +49 (0) 36926 945 163 sales@pollmeier.com

6.1 Breaking length

BauBuche is a high-performance material. Relative to its own weight, BauBuche can carry higher loads than most other building materials. This is demonstrated by the breaking length: The breaking length is a measurement of the strength of a material. Image a long suspended column. The breaking length of BauBuche is 8.3 kilometres, which means that if you were to construct a column of BauBuche and hang it from its top, it would need to be 8.3 kilometres long until it would break under its own weight. In contrast, the breaking length of conventional structural steel is 3.2 kilometres.

6.2 Savings in material

The superior strength and stiffness of BauBuche allows for smaller cross-sections, which in turn means major savings in material consumption. The savings in material vary of course from construction to construction, as different properties must be taken into account for the dimensioning of a structure. In the case of single-span beams, deformation (stiffness) is generally the key factor, whereas with continuous beams, the main concerns are bending strength or shear strength.

Materials	Solid timber C24	Glulam GL28	LVL Spruce	BauBuche GL75	The ta mater
Key properties					made spruc comp const
Bending					
strength $f_{\rm m}$	200/ <mark>100</mark> %	154/ <mark>77%</mark>	92/ <mark>46%</mark>	57/ <mark>29%</mark>	Assun
Shear					_ Serv _ Loac med
strength ${\rm f_v}$	200/ <mark>100</mark> %	240/ <mark>120%</mark>	112/ <mark>56%</mark>	104/ <mark>52%</mark>	_ Cons
Compressive					of 30 _ Calc to El
strength f	200/1 <mark>00%</mark>	152/ <mark>76%</mark>	102/ <mark>51%</mark>	56/ <mark>28%</mark>	
Tensile					
strength f _{t.o}	200/ <mark>100</mark> %	129/ <mark>64%</mark>	68/ <mark>34%</mark>	44/ <mark>22%</mark>	
Modulus of					
elasticity E _{mean}	200/1 <mark>00%</mark>	175/ <mark>87%</mark>	159/ <mark>80%</mark>	132/ <mark>66%</mark>	

The table to the left shows the material savings that can be made by using glulam GL28, spruce LVL and BauBuche GL75, compared with C24 (standard construction timber)

Assumptions:

- _ Service class 1
- _ Load-duration class: medium-term
- _ Constant cross-section height of 300 mm
- Calculation according to EN 1995-1-1

Required width to achieve same strength % material consumption

6.3 Comparison of BauBuche and steel

Thanks to their excellent load-bearing capacity, BauBuche GL75 beams are a viable alternative to steel girders of similar dimensions, as BauBuche constructions have no thermal bridges and therefore do away with costly fire protection cladding. In addition, there is no need for expensive connecting elements to the steel structure.

Comparison of structural bending strength of BauBuche and various rolled steel sections

M _D	S235	BauBuche GL75 of same width	S235	BauBuche GL75 of same height		
100 kNm	HEA 200 190 200 42.3 kg/m length	240 200 0.048 m³/m length	IPE 270 270 135 36.1 kg/m length	270 140 140 0.038 m³/m length		
200 k Nm	HEA 260 250 260 68.2 kg/m length	300 260 0.078 m ³ /m length	IPE 360 360 170 57.1 kg/m length	360 380 0.065 m ³ /m length		
300 kNm	HEA 300 290 300 88.3 kg/m length	340 300 0.102 m ³ /m length	400 400 180 66.3 kg/m length	400 220 0.088 m³/m length		
Assumptions						

BauBucheService class 1, kmod = 0.9, γ m = 1.20 (EN 1995-1-1)Dotted line: minimum cross-sectionSteelS 235, γ m = 1.00, fy, k = 235 N/mm², Wpl,y